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Problems of controllability and methods of stabilizing programmed motions of a large class of mechanical 

and electromechanical systems which are reversible with respect to the control are considered. Criteria of 

the controllability and stabilizability of reversible systems are obtained. Programmed motions and 

algorithms of programmed control are designed in analytical form and algorithms of programmed motions 

for non-linear reversible systems are synthesized. 

1. STATEMENT OF THE PROBLEM 

THE DYNAMICS of a large class of mechanical and electromechanical systems (MSs and EM%) are 
described by a differential equation of the form 

z’ = F(z, U, t), z(to) = zo, t > to (1.1) 

where z. and z = z(t) are the n-dimensional vectors of states of the system at the initial and current 
instants of time, u is the m-dimensional vector of controls, and F is an n-dimensional vector-function 
satisfying (for a feasible control) the conditions of the existence and uniqueness of a solution of 
system (1.1) and defining the properties of a specified controlled system (CS). 

If the controlled systems are MSs (slave mechanisms of robot-manipulators, lathes, coordinate instrument 
tools, etc.), their dynamics are described by Lagrange’s equations of the second kind in the following form 
WI 

d aT --_ ar+CQ+, 
dt aq aq aq 

4(r,)=q,, q’(t,)=q,, tat, 

Here q is the m-dimensional vector of generalized coordinates of the MS, T = %q’*Ao(q)q* is the kinetic 
energy of the MS, Ao(q) is an m X m matrix, II = II(q) is the potential energy of the MS, u is the m-dimensional 
vector of the controls, and the asterisk denotes transposition. 

In this case, Eq. (1.1) has the order n = 2m, and 

4 
2= II n 4’ 

, F(Z. U, tJ = II 4’ 

4’ (q)(-b,(q, q’, t) + II 
For EMSs containing DC motors with rigid reduction gears, Eq. (1.1) has the order n = 3m, and [S] 

(1.2) 

(1.3) 
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Here 1 is the m-dimensional vector of the currents in the armature circuits, u is the m-dimensional vector of :k 

controlling voltages applied to the armature circuits of the motor. .I, k,, , k,,, , L, R and k+. are the diagona! 
matrices of electromechanical parameters of the motor which are positive quantities, ill is the diagonal matrix 01 
the ratios of the reduction gears (such that cp = i,,q where cp is the vector of the angles of rotation of the motoi 
shafts), and A(q) is a non-degenerate matrix. 

System (1.1) is said to be controllable if for any two states +,,E R” and z!,, ER” (where K” is 

n-dimensional Euclidean space) and for arbitrary values of to<tl < 30 a control u(t) exists that the 
corresponding solution z(t) of system (1.1) satisfies the boundary conditions 

Z@o)=Zpo* Z(rI)=ZpI i 1 .‘.i) 

The solution z = z,,(t) of system (1.1) which satisfies boundary conditions (1.4) will he called 
programmed motion, and the control 

u = u,(t). f E [to, tr]. (tl to Cm) ii .'f 

corresponding to it will be called the programmed control. 
Let us consider a programmed motion z,, = zl,(t), t31,, of system (1.1). We will say that it is 

stabilizable if a control with feedback in the state vector in the form 

u=u(z,t), ratI) ii .6) 

exists which ensures asymptotic stability of the programmed motion z,(r). 
The problems under consideration in this paper concern the analysis of the conditions of 

controllability and StabiIizability of non-linear h&s and EMSs. Algorithms for designing program- 
med motions and for stabilizing them are synthesized. 

The methods proposed for solving the above problems generalize and develop the results 
obtained in [l-l 11. They are based on the property of the reversibility of the dynamical equations of 
MSs and EMSs with respect to the control. 

2. ‘THE REVERSIBILITY OF THE DYNAMICAL EQUATIONS AND l-HL 

TRANSFORMATION OF THE COORDINATES “l-0 CANONICAL. FORM 

The structure of the dynamical equations of MSs (1.1) and (1.2) and EMSs (1.1) and (1.3) is such 
that they may be represented in the form of system (1. l), where 

z = COl(Zi, * , , z,), tl=Wtr (9.1) 

F(z, u, t) = col(F,(z2, t), , E;_ I(Zr, r), c;,(z, u, t)) (‘-7) .“- 

F/(Zifl, t)=Ci(Zi,t)tDj(Zi, f)Zj+t, i= 1,‘. ,r- 1 (3,.i) 

F,(z, U, t) = 2) = C,(z, t) + D,(z, t) U (2.3) 

Here zi is an m-dimensional vector, z’ = col(z, , . , z;) are mi-dimensional vectors, and C’, and 

Dj(i= I,. ., r) are specified vector functions and matrix functions. 
Henceforth, we assume that vector functions F, (2.3) and (2.4) (i = 1, . . . , Y) are continuous/y 

differentiable a sufficient number of times with respect to their arguments. 
For MSs (1.1) and (1.2) we have 

(1,,, is the unit m x m matrix). For EM!& (1.1) and (1.3) we have 

.z = col(q, q’, I), n = 3m, E‘, (2’. f) = q’, 

F, (z”, t) = A ’ (q)(k,l - b(q, q’, t)), F, (z, u, t) = I, -’ (u - RI - k&q. ) 

C*(Z’,t)=O, D,(z’,t)=I,* C,(Z’, ?I = --A ‘CI)b(q, q., f) 

D,(z’. t)=A-*(qlk-,. C,(z’,rr=-L~‘(RIik,ipq’), D,(z’.t)=L-’ 

(1.6) 
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The matrices Di (i = 1, . . . , r) are non-degenerate for MSs and EM%. Hence, the dynamical 
equations (l.l), (2.1)-(2.4) may be written in the form 

z; = F&i+i) t)=Ci(Zi,r)+Di(Zi,t)Zi+l, i=l,. . . ,r- 1 (2.7) 

U = 0;‘(z, t)(zL - C,(z, t)) (2.8) 

which are added for the control. The MSs and EM!% having this property will be called reversible 
controlled systems (RCS). 

It is convenient to synthesize the stabilizing control laws using the canonical variables in the form 

[l-81 
X=COl(Xlp.. .,Xr)y X1 =Zl, Xi=Xj_lp i=2,...,r (2.9) 

instead of the original “physical” coordinates (2.1). 
Let us find the coordinate transformations relating x and z. In the general case these one-to-one 

transformations have the form 

x = \k(z, t), z = qx, t) (2.10) 

The vector functions ?(z, t) and @(x, t) are determined in Appendix 1 
In the case of MSs (l.l), (2.2)-(2.5), we have 

\k(z, t) = qx, I) = 
4 II II 4’ 

(2.11) 

For EMSs (l.l), (2.2)-(2.4), (2.6) we have 

4 

\k(z, r) = q’ 

~-‘(qN7J- b(q, q’, 0) n 4 

) @(x,t)= q’ (2.12) 

&I1 (A(q) 4” + & 4’> 01 

We write RCS (l.l), (2.1)-(2.4) using the canonical variables 

X’=PX+Q(R(x,t)tS(x,t)u) (2.13) 

Here R(x, t) and S(x, t) are the m-vector and m X m matrix, respectively, specified in 
Appendix 2, P and Q are the n X n and n X m matrices 

(2.14) 

and 0 is the zero matrix of corresponding dimensions. 
In the case of MSs we have n = 2m, and 

ROc,r)=-A;‘(q)b,(q,q’,t), s(x,t)=~;‘(~) 

For EMSs we have n = 3m, and 

(2.15) 

(2.16) 

R&O= --A;‘(q)b,(q,q’,q”,t), s(x,r)=~,-‘tq) 

A, (4) = Lk; A(q), b, (4, q’. q”, b) = (Lk; A.(q) + Rk&JA(q)) q” t 

+ Lk; b’ (4, q’. t) + Rk; b (q, q’. t) + k&q’ 

A1 (q) is the non-degenerate matrix. 
Because the matrix S(x, t) in (2.13) is non-degenerate, Eq. (2.13) can be solved for the control in 

the form 

u = S-‘(x, r)(x; - R(x, r)) (2.17) 
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Hence, the dynamical equations of MS (l.l), (2.1)--(2.5) and EMS (1.1). (2.1)-(2.4), (2.6) can be 
represented in canonical form (2.13) which can be solved for the control in form (2.17). 

3. CONTROLLABILITY AND ALGORITHMS FOR DESIGNING PROGRAMMER 
CONTROLS AND PROGRAMMER MOTIONS 

First, we will demonstrate that system (2.13) is controllable. 
Consider the auxiliary control 

w=R(x, t) + S(X, b)U 

System (2.13) then takes the form 

x’=Px-tQw 

It can be shown that 

(3.1) 

(3.2) 

Hence [12], system (3.2) is ~ontroIlab~e. This means that the control law w = w,,(f) = w!, exists 
transferring (3.2) from any initial state xP(to) = xPo to any final state along the trajectory 
x=x,(t)=x,inatimet,-ff,<~. 

Using (3. I) we obtain 

r.f = s-‘(x, t)@ - R(x, t)) (3.3) 

If we substitute the control law w = r+‘,_,(t), x = x,(t) into (3.3) we obtain the control law 

iJ=tlp = u,, It) = S-r (xP, t)(wp - R (xp , t)) (3.4) 

which ensures that system (2.13) is transferred from any initial state X,,(Q)) = xPG to any final state 
x,(tt ) = xP1 along the trajectory x = xPI in a time tt - to< ~0. 

It follows from the controllability of canonical system (2.13) and the coordinate transformation 
(2.10) that the control law 

II = S -“(W& t), t)(w - R(rk(z, t), r)) (3.5) 

where w = w,(r), z = z,,(t) = @fxP, t), transfers the original system (l.l), (2.f)-(2.4) from the 
initial state zPo = Q>(xPCt, to) to the final state zrtl = @,tx,,, , kl ) along the trajectory 

z = zp = @(Xp, r) (3.6) 

in a time tr -to<~_ 
Hence, the original system (1. l), (2.1)-(2.4) is controllable. 
For the system written in canonical form (2.13) and (2.14) the criterion of ControlfabiIity has the 

form 

rankS(x, t) = m, x f R”, t 2 to (3.7, 

and for original system (1. I), (2. f)-(2.4) it implies the condition 

rank&Q’, t)=m, d’fR”‘, t%& i= I,. . , ,?’ (3.8) 

Note that criteria (3.7) and (2.8) are satisfied for the class of MSs and EMSs under consideration. 
Let us design the programmed control and the programmed motion in analytical form. For this 

purpose, we will first seek an auxiliary programmed control and programmed motion for linear 
canonical system (3.12) and (3.14), i.e. we construct 

w=w&), x=x&), tE(r,,ttf (tt -to<-)+ (3.9 

satisfying the boundary conditions 
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xp(fo)=xpo* xp(h~=xp1 (3.10) 

We will seek w,(t) in the form 

uJ&) = QQ*@t -*la, rf[&J? r,] (3.21) 

where ar is the required constant a-dimensional vector. At the instant tt the solution x(t) of system 
(3.21, (2.14) and (3.11) takes the form 

.xpr =e St, -a, ,l Xp@ + K:a (3.12) 

(3.13) 

Because of the controllability of system (3.2) and (2.141, the matrix K (3.13) is positive definite 
[13], and hence we obtain from (3.12) 

a=K+(xpl -ePTx,& T=t, -to (3.14) 

Ehminating the vector LY (3.14) from (3.11) we find the required auxiliary programmed control in 
the form 

~~ft)=QLePf’fl-t)K-‘~~PI -ePTxpo) 

Taking (2.14) into account we have 

(3.15) 

P(f,- t) = y _pk(#, - t)” r--l j-+-k 
e ePT= 2 

k=O k! ’ k=O k! 

e*ewP*(~I -Ol= WI -0”-‘w” l)!>I,,. . .,(@I -ty/2!)I,,(t~ --t)Im,Jm] 

K, = (T 2’-‘-i*ll(f2r-i-j+I)(r-i)!(r-j)!))I,, i,j=l,*..,t (3.16) 

where E;il (i, j = 1, . . . , r) are m x m blocks of the matrix I( (3.13). Using (3.14)-(3.16) we can 
represent the auxiliary programmed control in the form 

t-1 &(~l -p--k: 
w,(rf= dz - 

k&J (r-1 -k)! ’ tEt&h bll (3.17) 

where the m-dimensiona vectors & (k = 0, . . . , r - 1) are such that the equality 

r-1 pkrk 
/3=col(~~,. I I ,flr_+K-*(Xpl - ( ): --)x& 

k=O k! 
(3.18) 

holds, 
Using (3.17), (3.18) and the relations 

we can construct programmed motion (3.9) and (3.10} which corresponds to programmed control 
(3.17) and (3.181, in the form 

r-- 1 P(t - t@)k 
x,R)=( r: - k, 

t r-1 pk@- r)& 

k-=0 
)xpo * I ( c 

to k=O k! 
)QX 

rE[tQ,tl] (3.‘19) 

Tf we substitute expressions (3,17)-(3.19) obtained for wp (t) and X~ (t), respectively, into (3.4), 
we obtain the required programmed control for the RCS written in canonical variabies (2.13) and 
(2.14). Using w = ++(t) (3.17), (3.18), x = xp (f) (3.19) and coordinate transfo~ation (2.10) we 



obtain programmed control (3.5) and the programmed motion z,,(t) = a(~,,. t 1. tf it,,, fl] corres- 
ponding to it for the original RCS (1.1). (2.1 J-(3.4). 

4. STABILIZABILITY AND ALGORITHMS FOR THE STABILIZA’I ION OI 

PROGRAMMED MOTIONS 

It follows from the controllability of linear system (3.2) that a constant I’PI X m matrix I’,, exists 

such that the matrix 

T‘=P+QT‘, !-i.i b 

is stable, i.e. we have 

Re&(r)<O, i= 1,. ,n (4.2) 

where h,(r) (i = 1, _ . . . 12) are the eigenvalues of I‘. 
Consider the auxiliary control law with feedback in x 

W=Q*x; +r*( x - xp) = Q* (xi + r(x - xp)) = WP + ro(x - xp) (4.3) 

The equation of the transient 

e,=e,(r)=x(t)-xp(t), tarto (3.4) 

in closed system (3.2), (4.1)-(4.3) then have the form 

e; = Fe,, e,(t*)=e,o =x0 -x,(t,), tat0 (4”5) 

Hence, the programmed motion x,(t) of system (3.2). (4.1)-(4.3) is asymptotically stable as a 
whote. The transient e., (4.4) of the system satisfies the limit 

Ie,(t)I~cc,exp(y(t-t0))Ie,(t0)I, t&f0 (4.6) 

y=maxRe?#) (i=l,...,n) 
i 

where cl > 0 is a parameter which depends on I‘ only. 
If we substitute (4.1)-(4.3) into (3.3) using (3.4), we obtain the stabilizing control law 

u=S-l(x,t)(Q*x~+ro(x-~p)-R(~,t))= 

= s-‘(x, t)(Q”(x; + r(x .- xp)) - R(x, t)) = 

= s-l (x, Q(w, + ro(x - xp) - R (x. t ,) = 

= s-‘(x, t>(S(x,, t) up + R(xp, t) + ro(x - xp j -- R(x, tj) (4.7) 

in the canonical variables for RCS (2.13) and (2.14). 
The equation of the transient in closed system (2.13), (2.14), (4.7), (4.1) and (4.2) has the form 

(4.51, (4.1) and (4.2), and consequently the programmed motion x,,(r) is asymptotically stable as a 
whole, i.e. the programmed motion x,(t) is stabilizable and estimate (4.6) holds for the transient. 

It can be shown that in original RCS (1 .I), (2.1)-(2.4) the programmed motion +(t) is 
stabilizable. 

If we substitute (2.10) into (4.7), (4.1) and (4.2). we obtain the stabilizing control law in original “physical” 
coordinates 

u =S-‘(\lr(z, t),t)tQ**‘@,, t) + r,(*(z, t) - *(z,,, t)) - R(*((z, t),t)) = 

=S-‘(*(z, O,t)(W(zp, t),t) up +R(*(zp, &t) + r,(*(z, t) - *(zp i)) - R(*(z, t).t)) (431 

The equation of the transient in closed system (1.1), (2.1)~(2.4). (4.8), (4.1) and (4.2) has the form 

e; = We, +zP, S-‘W(e, +zp, 0, t)(S(*(zpB t),r)~~ + R(W(zp, r),f) + ro(*(e, +zp, t) - *(zp, t)) - 

-R(~(e~~zzp,t),t)),t)--(zp,Ilp.t), tat,, e,=z-zzp (4.9) 
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Let us estimate the transient in (3.15). We will assume that for each of the vector functions Cj (i = 1, . . , r) 
and matrix functions Di (i = 1, . . . , r) in (2.3) and (2.4) for all possible values of the arguments the following 
limits hold 

i W 
lCi@~,t)f~@~j+u~jfz I , I~~~Z',f~14B3jr i'tl,...,? (4,101 

Here ana0, azjaO, ajj10 (ki> 1) are constants. We will assume that similar limits hold for the partial 
derivatives of Ci and 4 with respect to their arguments. 

Then, using the Limits of the tinai increments of the vector function at(e, fxP t t) - Qf(xp, I) it can be shown 
that the transient e,(t) = z(t) - zp (t) satisfies the Umit 

I e, (0 I = I z(f) - zp (0 i = I We, (0 + x,@l, tl -*o(+dt~, 01 = 

1 

1 

From (4.11), (4.6) and (4.2) it fohows that the programmed motion f,,(d) in the original system (2.1>, (1.1) 
and (2.4) with control law (4.81, (4.1) and (42) is asymptotically stable as a whole, i.e. the programmed motion 
zp(l) is stabilizabie. 

Thus, the control laws (4.7), (4.1), (4.2) and (4.8), (4.11, (4.2) synthesized above ensure 
asymptotic stability as a whole of the programmed motions xP (t) and zP (t) for corresponding RGSs 
(2.13), (2.14) and (l.l), (2.1)-(2.4) with limits (4.6) and (4.11) for transients. 

13~ specifying the matrix I’, of gains it is possible to obtain the desired damping of the transients, 
For instance, to obtain an aperiadic transient in closed systems it is sufficient to require that the 
spectrum of matrix r (4,l) should consist of real negative numbers only. 

In the case that the matrix I?, in (4,1> consists of diagonal m X m blocks POT = d~ag{r~~j~~~ fk = 0, . . , , 
r- I), so that PQ = f-r,, . . . t -fo,t-l 1, it is possible to decompose the equation of the transient in the closed 
system (which is an RCS described in canonical form (2.13) and (2.14) with controi law (4.7), (4.1) and (4.2)) 
into m independent equations of the rth order of the form 

ew 
xti 

(r-1) +ro,r-l,ie~~~ f,..+re,fi?~UaO, i=f,...,m 

Here e$,) is the kth derivative of the coordinate eXlc = e’,O) = xyi -rlip with respect to time; the transient eX 
(4.4) may be presented in the form e, = col(e,, , . . . , e,,), e,, = col(e,,, , , ” . , e,,,) =x1 -xlp, ez = e*,,+, , i = 2, 
. . ,, r. 

APPENDIX 1 

Taking into account relations (2.9) and (2.3) and the fact that the matrices Z& (i = I, . , . ) 
non-degenerate it is possibte to obtain coordinate iransfo~at~ons (2.10) relating x and Z. We have 

r- 1) are 

X = U(Z, f) = coff\l;l, (Z’, t>, . I . , u,tz’, t)) (ALI) 
Here 

*, fZX, t) =x1 =zt = z; = K, + L,z, 

**w, t1=x2 =x; = *;(z’, t) =z; = F,(z’,t) = 

=C,@‘,f)+fl~(z’,t)zg = K,(~~,t)+L~(z',t).z~ 

*i(ZI t) =Xj =Xj__l = *~_g{Zj-‘, r) “K;_l(Zi-2, t) + (L~_I(~‘-~, f)Zj_l) = (A1.2) 

=a;-,@‘-*, t) + L;_,(z’-2, r)t+t +~~_r(t~-‘, tj F~_&, t) = 

=R;_t&-2, f) + L;_,(P, 1lq-1 + J$_l{Z ‘-‘, r)(Ci_..t(Zi’*, t) + 

+Di_1(2”-‘, t)Zi)"Ki(Zi-',f)+Li(Zi-',t)zi: i=3,,..,Il 

wfiere&f~=l,..., r> are vector functions and Lj (i = f, _ . , , r) are matrix functions of the f0z-m 
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K,=O, &,=I M’ K,(z’,t)=C*(z’,t), L,(Z’, t)=L,D,(z’,t) 

Ki (Zi-‘, r)=K;_,p, t) + .c; l(zi-2, f)Zi_, +I+ r(Z i--2~ t) Ci_,(Zi-‘, f) (Al.21 

L&l, r) =Lj-@Y r)Di_,(Zim ‘, t,, i=3,...,r 

Since the matrices Li are non-degenerate we obtain the transformation 

2 =*pL f) = coi(@X (X’, f), . QD,(xr, t)) 

hysolvingEq.fA1.2)forZ,(i= I., .,r). 
Here we have 

Qt(X’, tf =M, + 3,X,, $(X’, rj =&fjp, rl +Ni(Xi-l, 0 xj 

i=2 . . . . . r; ~~=col(x ,,..., xi), xr=x 

M, =o, N, =I,, Mi(X’-l,t)=-Li’(~i.-t(xi-l, t), t) fCi(@i-l(Xi--‘, r), f), 

Ni(Xi--‘, t) = [,I” (&I(+, t),r) 
*i- 1 

(x i-l,t)=col(~P,(x’,r) . . . . . o,i~l(x’-‘,i)) 

(AI.4) 

(Al.ii 

APPENDIX 2 

The vector unction R (x, t> and the matrix function 5(x, t f in (2.13) are determined from the expression for 

x*r if relations (2.10), (Al.l)-(A1.5) are taken into account. In fact, we have 

x;= Q;(z: t) = K;(z’-‘, t) + &(z’-‘, t)Zr) = 

=K&‘-1, t) +L;(zr-‘, I)Zr+Lrp, t)Z; z 

=K,~~‘-‘,~)+~;~z’-‘,t)z,+~,~z’-~,i)~~r~z,~)+~,~~,~)~)~ 

= R (x, t) + S(x, f) u 

Here 

R(x,r)=K;(~,‘-‘(~‘-~,t),t)+~;(~‘-~(x~-’,~),~)~~(x~,~), 
+ L,(@r-.l(x’-l, 0, r) c,wx. 0, tf 

S(x, t) = L,(&l cx’- I, t).t)D,(#(x, et) 
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